Numeral Base Evaluator

Bin Han

Project Introduction

A number like 235 in decimal is a notation for the following expression:

2 -102+3 - 10" +5 - 10 =200+ 30 + 5

= 235

We can take any other integer as the base of our number system. In base 9 (nonary), 235
would be a notation for the following expression:

292439459 =162+27+5
which evaluates to 194 in decimal. In the course, we have learned the representation of numbers
in binary, i.e. base 2.

Write a function which can take a notation in any base and compute its value.
A base will be defined by a dictionary which maps digits (as characters) to their
value (as integers).

binary = {'0': 0, '1': 1}
decimal = {'0': 0, '1': 1, '2': 2, '3': 3, '4': 4, '5': 5, '6': 6, '7T': 7,
'8': 8, '9': 9}
nonary = {'0': 0, '1': 1, '2': 2, '3': 3, '4': 4, '5': 5, '6': 6, 'T': 7,
'8': 8}
hexadecimal = {

'0': 0, '1': 1, '2': 2, '3':3, '4': 4,

'5': 5, '6': 6, 'r':7, '8':8, '9':9,

'A': 10, 'B': 11, 'C': 12, 'D': 13, 'E': 14, 'F': 15

1. define a function parse(base, notation) which takes notation as a string, and returns a
list of integers 1, so that 1[i] is the value of the digit found in position i in the string, as
an integer. If any digit is not valid, then return None instead of a list. The parameter
base is a base, as defined above.

def parse(base, notation):
list=[]
for i in range(len(notation)):
if notation[i] in base:
list.append(base[notation[i]])
else:
return None
break
return list
print(parse(binary, "235"))
print(parse(binary, "1101"))

None
[1, 1, 0, 1]

2. define a function powers(m,n), where m is the number of digits in the base as an integer,
and returns a list of powers of m of length n.

def powers(m,n):
list=[]
for i in range(n):
list.append (m**i)
list.reverse()
return list
print (powers(2, 5))
print (powers(3, 6))
print (powers (4, 8))

(16, 8, 4, 2, 1]
(243, 81, 27, 9, 3, 1]
[16384, 4096, 1024, 256, 64, 16, 4, 1]

3. Define a function n_ary(base, notation) that takes the base, and the notation as a
string. Return None if the notation is invalid for the given base, or its value as an
integer otherwise. You must call the above functions to structure the function.

def n_ary(base,notation):
if parse(base,notation) is not None:
sum=0
n=len(notation)
for i in range(n):

sum=sum+int (base [notation[n-1-i]])*(len(base)**i)
return sum
else:

return None
print(n_ary(decimal, "235"))
print(n_ary(nonary, "235"))
print (n_ary(binary, "235"))
print(n_ary(binary, "1011"))
print(n_ary(hexadecimal, "FF"))

235
194
None
11
255

4. Define a function make_base(n) which creates the usual base for any n less or equal to
10. For example, base(2) equals binary as binary.

def make base(n):
dict={%}
for i in range(n):
dict[str(i)]l=i
return dict
print (make_base(2))
print (make_base(3))
print (make_base(4))

{'0': 0, '1': 1}
{'0': 0, '1': 1, '2': 2}
{'0': 0, '1': 1, '2': 2, '3': 3}

	Project Introduction

